

PHENYLPROPANOID GLYCOSIDES FROM *CALCEOLARIA HYPERICINA**

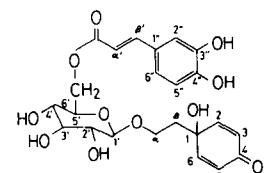
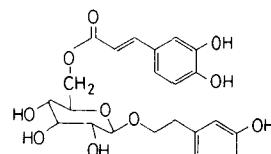
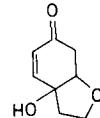
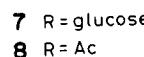
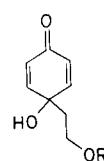
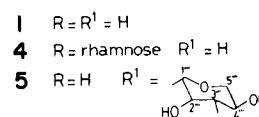
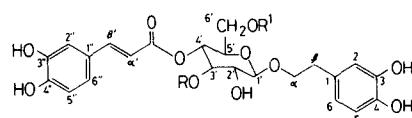
M. NICOLETTI, C. GALEFFI†, I. MESSANA, G. B. MARINI-BETTOLO, J. A. GARBARINO‡, and V. GAMBARO‡

Dipartimento di Biologia Vegetale, La Sapienza, P. le A. Moro, 2, and Centro CNR di Chimica dei Recettori e delle molecole biologicamente attive, Istituto di Chimica, Università Cattolica del S. Cuore, Roma, Italy; †Laboratorio di Chimica del Farmaco, Istituto Superiore di Sanità, Roma, Italy; ‡Universidad Federico Santa María, Casilla 110-V, Valparaíso, Chile

(Revised received 23 June 1987)

Key Word Index—*Calceolaria hypericina*; Scrophulariaceae; phenylpropanoid glycosides; calceolarioside C and D, verbascoside.

Abstract—Besides the known compound verbascoside, two new phenylpropanoid glycosides, calceolarioside C, 1'-O-β-D-(3,4-dihydroxy-β-phenyl)-ethyl-4'-O-caffeoxy-β-D-xylopyranosyl-(1''→6')-glucopyranoside, and calceolarioside D, 1'-O-β-D-(1-hydroxy-4-oxo-2,5-cyclohexadienyl)-ethyl-6'-O-caffeoxyglucopyranoside, were isolated from the aerial parts of *Calceolaria hypericina*. The structures of the new compounds were elucidated by spectroscopic methods.








Several species of *Calceolaria* (Scrophulariaceae) are used in popular Chilean medicine as a tonic, stomachic and cicatrizing agents and against bacterial infections [2, 3]. A previous paper described the isolation of two new phenylpropanoid glucosides, calceolarioside A (1) and calceolarioside B (2), from the methanolic extract of *C. hypericina*, besides halleridone (3) [1]. Further purification by counter-current distribution (CCD) of the same extract resulted in the isolation of three additional minor compounds. One of them was readily identified as verbascoside (acteoside) (4) [4] whereas the other two were new phenylpropanoid glycosides, 5 and 6, named calceolarioside C and D, respectively.

IR and UV spectra of calceolarioside C (5), mp 123–125°, $C_{28}H_{34}O_{15}$, were very similar to those of calceolarioside A and B [1]. Also 1H NMR and ^{13}C NMR data (Tables 1 and 2, respectively) were closely related to those of 1, except for the presence of additional peaks attributable to a sugar unit. The deshielding of H-6_a and H-6_b ($\Delta\delta = 0.2$ ppm) allowed assignment of the linkage of the additional unit at position 6' of the glucose, as was also confirmed by the corresponding shift of the C-6' signal in the ^{13}C NMR spectrum ($\Delta\delta = +5$ ppm), due to the *O*-alkyl substitution.

Total acid hydrolysis of 5 yielded D-glucose and D-xylose. 1H NMR data confirmed the identification of the additional sugar unit as xylose, linked in the β -form [H-1'' at $\delta 4.25$, doublet with $J = 7.5$ Hz and C(1'') at $\delta 105.2$ [5], and thus the structure of 1'-O-β-D-(3,4-dihydroxy-β-phenyl)-ethyl-4'-O-caffeoxy-β-D-xylopyranosyl-(1''→6')-glucopyranoside was assigned to calceolarioside C.

Compound 5 therefore is an isomer of conandrioside, isolated from *Conandron ramoidioides* [6], in which the

xylose linkage was assigned to position 3'. A diagnostic difference between the two compounds is represented by the chemical shift value of the anomeric proton of the xylose ($\delta 4.52$ in conandrioside). As a confirmation in the couple verbascoside (rhamnose in 3') [4]/forsythoside A

* Part 2 in the series 'Studies in *Calceolaria* genus'. For Part 1 see ref. [1].

Table 1. ^1H NMR spectral data of compounds **5** and **6***

H	5	6
2	6.68 (<i>d</i> , <i>J</i> = 2.5)	6.97 (<i>d</i> , <i>J</i> = 10.0)
3	—	6.09 (<i>d</i> , <i>J</i> = 10.0)
5	6.65 (<i>d</i> , <i>J</i> = 8.0)	6.09 (<i>d</i> , <i>J</i> = 10.0)
6	6.53 (<i>dd</i> , <i>J</i> = 2.5 and 8.0)	6.97 (<i>d</i> , <i>J</i> = 10.0)
α_1	4.03 (<i>m</i>)	3.94 (<i>m</i>)
α_2	3.72 (<i>m</i>)	3.66 (<i>m</i>)
2β	2.80 (<i>t</i> , <i>J</i> = 7.5)	2.05 (<i>m</i>)
1'	4.36 (<i>d</i> , <i>J</i> = 8.0)	4.28 (<i>d</i> , <i>J</i> = 8.0)
2'	3.60 (<i>m</i>)	3.20 (<i>dd</i> , <i>J</i> = 8.0 and 9.0)
3'	3.62 (<i>t</i> , <i>J</i> = 9.0)	3.33–3.58
4'	4.90 (<i>t</i> , <i>J</i> = 9.0)	3.33–3.58
5'	3.72 (<i>m</i>)	3.33–3.58
6'_a	3.86 (<i>dd</i> , <i>J</i> = 2.0 and 11.5)	4.33 (<i>dd</i> , <i>J</i> = 2.0 and 11.5)
6'_b	3.82 (<i>dd</i> , <i>J</i> = 5.0 and 11.5)	4.49 (<i>dd</i> , <i>J</i> = 5.0 and 11.5)
2''	7.02 (<i>d</i> , <i>J</i> = 2.5)	7.08 (<i>d</i> , <i>J</i> = 2.5)
5''	6.78 (<i>d</i> , <i>J</i> = 8.0)	6.80 (<i>d</i> , <i>J</i> = 8.0)
6''	6.92 (<i>dd</i> , <i>J</i> = 2.5 and 8.0)	6.95 (<i>dd</i> , <i>J</i> = 2.0 and 8.0)
α'	7.56 (<i>d</i> , <i>J</i> = 15.5)	7.59 (<i>d</i> , <i>J</i> = 15.5)
β'	6.26 (<i>d</i> , <i>J</i> = 15.5)	6.30 (<i>d</i> , <i>J</i> = 15.5)
1'''	4.25 (<i>d</i> , <i>J</i> = 7.5)	
2'''	3.15 (<i>dd</i> , <i>J</i> = 7.5 and 9.0)	
3'''	3.30 (<i>m</i>)	
4'''	3.37 (<i>m</i>)	
5'_a	3.21 (<i>dd</i> , <i>J</i> = 7.5 and 8.0)	
5'_b	3.46 (<i>m</i>)	

*400 MHz, in CD_3OD with TMS as internal reference. The values of the coupling constants are in Hz.

(rhamnose in **6'**) [7] the resonance of the anomeric proton of the rhamnose shows a similar difference.

Calceolarioside D(**6**), $\text{C}_{23}\text{H}_{26}\text{O}_{11}$, showed UV maximum absorptions at 331 and 290 nm and IR bands at 3400 (*br*), 1700 and 1670 cm^{-1} . In respect to calceolarioside B(**2**) the ^1H NMR spectrum of **6** (Table 1) presented analogous signals for the *trans*-caffeyl and the 1,6-disubstituted glucose moieties, whereas the remaining resonances did not agree with the 3,4-dihydroxy- β -phenylethoxy moiety present in the phenylpropanoids so far isolated from *Calceolaria*. Indeed this last pattern of peaks was attributed to a cyclohexa-2,5-dienone structure (δ 6.09 and 6.97, two doublets with *J* = 10 Hz, each accounting for two protons) and a $\text{CH}_2\text{CH}_2\text{O}-$ sequence (Table 1). These assignments, as well as those of the ^{13}C NMR spectrum of **6**, were in good accordance with those of structurally related products, i.e. cornoside (**7**) [8] and hallerone (**8**) [9], accounting for the presence of a (1-hydroxycyclohexa-2,5-dien-4-one)-ethoxy unit linked to the position 1' of the glucose. Thus the structure of 1'-*O*- β -D-(1-hydroxy-4-oxo-2,5-cyclohexadienyl)-ethyl-6'-*O*-caffeylglucopyranoside was assigned to **6**.

The occurrence in plants of different families of phenylpropanoid glycosides and cyclohexanols, as hallerone (**8**) and halleridone (**3**), suggested a common metabolic pathway [9, 10]. This hypothesis is now endorsed by the presence of the cyclohexa-2,5-dienone structure in calceolarioside D.

Table 2. ^{13}C NMR spectral data of compounds **4** and **5***

C	5	6
1	131.5	68.7
2	117.1 ^a	153.6
3	145.7	127.6
4	144.5	187.3
5	115.3 ^b	127.6
6	121.3	153.6
α	72.5	65.6
β	36.5	40.4
1'	104.3	103.7
2'	75.2 ^c	74.2 ^a
3'	75.8 ^c	77.3
4'	72.5	71.0
5'	74.9 ^c	74.8 ^a
6'	68.5	64.2
1''	127.7	127.2
2''	116.4 ^a	116.1
3''	146.4	146.0
4''	149.6	148.8
5''	114.7 ^b	114.5 ^b
6''	123.0	122.6
α'	116.3 ^a	114.9 ^b
β'	147.7	146.8
COO	168.5	168.7
1'''	105.2	
2'''	74.8 ^c	
3'''	77.5	
4'''	71.1	
5'''	66.8	

*In CD_3OD ; TMS as internal reference.

^{a–c}These values may be interchanged in the same column.

EXPERIMENTAL

^1H NMR and ^{13}C NMR spectra were registered on a Bruker AM 400 spectrometer. Separations were performed by CCD with a Craig Post apparatus (200 stages, 10:10 ml, upper and lower phase).

Separation. Acteoside (**4**) (0.2 g, K_r = 0.26), and a mixture of **5** and **6** were obtained from the butanolic residue (1.5 g) by CCD using the solvent system H_2O –AcOEt–*n*-BuOH (10:8:2). The mixture, further purified using H_2O –AcOEt–*n*-BuOH (10:8.5:1.5) gave pure calceolarioside D (0.31 g, K_r = 1.49) and calceolarioside C (0.44 g, K_r = 1.11). Acteoside was identified by direct comparison with an authentic sample.

Calceolarioside C (5**).** Crystals from AcOEt and *n*-hexane, mp 123–125°. $[\alpha]_D^{25} = -2.7^\circ$ (MeOH ; *c* 1); UV (MeOH), λ_{max} , nm ($\log \epsilon$): 329, 296, 219 (4.08, 4.00, 4.89); IR (KBr), ν_{max} : 3350, 1690, 1650 and 1060 cm^{-1} . ^1H NMR and ^{13}C NMR: Tables 1 and 2, respectively. (Found C, 54.97; H, 5.70; calcd for $\text{C}_{28}\text{H}_{34}\text{O}_{15}$ C, 55.08; H, 5.61%).

Hydrolysis of calceolarioside C (5**).** Compound **5** (100 mg) was treated with 1 N H_2SO_4 (30 ml) at 100° for 1 hr. The reaction mixture was neutralized with BaCO_3 , the insoluble material was removed by filtration and the soln extracted with AcOEt. In the aq. soln D-glucose and D-xylose were identified by TLC and through the corresponding β -acetyl derivatives separated by

CCD ($\text{H}_2\text{O}-\text{Me}_2\text{CO}-\text{cyclohexane}$, 4:6:7) and compared with authentic specimens.

Calceolarioside D (**6**). Colourless amorphous powder. $[\alpha]_D^{25} = -21.5^\circ$ (MeOH; c 2); UV (MeOH), λ_{max} , nm (log ϵ): 331 (4.13), 290 (4.05); IR (KBr), ν_{max} : 3400 (br), 2920, 1700, 1670, 1630, 1050 cm^{-1} . ^1H NMR and ^{13}C NMR δ : Tables 1 and 2, respectively. (Found C, 57.59; H, 5.55; calcd for $\text{C}_{23}\text{H}_{26}\text{O}_{11}$, C, 57.74; H, 5.48%).

REFERENCES

1. Nicoletti, M., Galeffi, C., Messana, I., Garbarino, J. A., Gambaro, V., Nyandat, E. and Marini-Bettolo, G. B. (1986) *Gazz. Chim. Ital.* **116**, 431.
2. Navas, L. E. (1979) *Flora de la Cuenca de Santiago de Chile (Scrophulariaceae)* Tomo III, p. 105. Ediciones de la Universidad de Chile, Santiago de Chile.
3. Muñoz, M., Barrera, E. and Meza, I. (1981) *El Uso Medicinal y Alimenticio de Plantas Nativas y Naturalizadas en Chile* n. 23, p. 48. Museo Nacional de Historia Natural, Santiago de Chile.
4. Andary, C., Wylde, R., Laffite, C., Privat, G. and Winternitz, F. (1982) *Phytochemistry* **21**, 1123.
5. Andary, C., Privat, G., Wylde, R. and Heitz, A. (1985) *J. Nat. Prod.* **48**, 778.
6. Nonaka, G. and Nishioka, I. (1977) *Phytochemistry* **16**, 1265.
7. Endo, K., Takahashi, K., Abe, T. and Hikino, H. (1981) *Heterocycles* **16**, 1311.
8. Rosendal Jensen, S., Kjaer, A. and Juhl Nielsen, B. (1973) *Acta Chim. Scand.* **27**, 367.
9. Messana, I., Sperandei, M., Multari, G., Galeffi, C. and Marini-Bettolo, G. B. (1984) *Phytochemistry* **23**, 2617.
10. Abdullahi Hawa, Nyandat, E., Galeffi, C., Messana, I., Nicoletti, M. and Marini-Bettolo, G. B. (1986) *Phytochemistry* **25**, 2821.

Phytochemistry, Vol. 27, No. 2, pp. 641-644, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
© 1988 Pergamon Journals Ltd.

PHENYLPROPANOID GLUCOSE ESTERS FROM *PRUNUS BUERGERIANA*

HIROKO SHIMOMURA, YUTAKA SASHIDA and TOKUO ADACHI

Tokyo College of Pharmacy, 1432-1, Horinouchi, Hachioji, Tokyo 192-03, Japan

(Revised received 4 June 1987)

Key Word Index—*Prunus buergeriana*; Rosaceae; phenylpropanoid glucose esters; caffeic acid esters; *p*-coumaric acid esters; cyanogenic glucoside; mandelonitrile glucoside.

Abstract—Two new phenylpropanoid glucose esters, 6-*O*-caffeoyl-1-*O*-*p*-coumaroyl- β -D-glucopyranose, and 6-*O*-*p*-coumaroyl-D-glucopyranose, along with three known compounds, 1,6-di-*O*-caffeoyl- β -D-glucopyranose, 6-*O*-caffeoyl-D-glucopyranose and (2*R*)-[(6-*O*-caffeoyl)- β -D-glucopyranosyloxy]benzeneacetonitrile were characterized from the bark of the *Prunus buergeriana* using spectroscopic methods.

INTRODUCTION

We have previously reported on the isolation and structural determination of a series of phenylpropanoid glucosides from the bark of *Prunus grayana* Maximowicz [1, 2]. In our continuing chemical examination of phenolic compounds in *Prunus* species, we have now isolated two new phenylpropanoid glucose esters from the bark of *Prunus buergeriana* Miquel. This paper describes the isolation and characterization of these compounds.

RESULTS AND DISCUSSION

A methanolic extract of *P. buergeriana* bark was partitioned with chloroform, and then *n*-butanol. The *n*-butanol soluble part was repeatedly chromatographed

over silica gel and Sephadex LH-20 column to give compounds **1**–**5** as amorphous powders.

Compound **1** was analysed for $\text{C}_{24}\text{H}_{24}\text{O}_{12}$ (secondary ion mass spectrometry [SIMS] m/z 505 [$\text{M} + \text{H}$] $^+$). The ^1H NMR spectrum of **1** showed the existence of two *trans*-olefin systems, aromatic protons of two ABC systems and sugar protons. An anomeric proton signal (δ 5.60, *d*, $J = 7.7$ Hz) indicated that the C-1 position of the glucose moiety was acylated. In the ^{13}C NMR spectrum, nine pairs of duplicated signals were observed, which were assigned to the phenylpropanoid moieties. On alkaline methanolysis with methanolic sodium methoxide **1** afforded methyl caffeate and D-glucose. Therefore, caffeic acid was attached to some position of 1-*O*-caffeoyl- β -D-glucopyranose. The location of the residual caffeoyl group was determined to be the C-6 position of the glucose moiety from the chemical shift value in the ^{13}C NMR spectrum of